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Maximum Likelihood Combining of Stochastic Maps

Brandon Jones, Mark Campbell, and Lang Tong
Cornell University, Ithaca, NY 14850, USA
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Abstract— The problem of combining stochastic maps ob-
tained by independent agents is considered. Using the gen-
eralized likelihood ratio statistics, the problem of matching
triangles that correspond to common landmark observations in
different stochastic maps is formulated as a bipartite matching
problem with generalized likelihood ratio statistics. From the
matched triangles between each map, the maximum likelihood
combining of stochastic maps is generated. It is shown that
the generalized likelihood ratio statistic and the maximum
likelihood combining of maps can be computed in closed form,
which makes the proposed algorithm a scalable solution to
matching and combining stochastic maps with a large number
of landmarks.

Index terms: Stochastic maps, simultaneous localization and
mapping (SLAM), maximum likelihood combining.

I. INTRODUCTION

The problem of combining stochastic maps from two
or more independent agents arises naturally in autonomous
robotics. By stochastic map we refer to the noisy esti-
mates of landmark locations produced by a robot during
its exploration. For example, when two robots explore an
area independently, each constructs a stochastic map of the
explored region under its own coordinate system by solving
the simultaneous localization and mapping (SLAM) problem
[1][2][3]. Although the maps of two separate robots that
individually conduct SLAM are in general different (as they
may explore different areas of the environment), some of the
landmarks in the explored regions may have been observed
by both robots. And if the two robots meet during their
exploration, they may wish to construct a more informative
and accurate joint map from their individual maps. The
challenge of combining individual maps arises from the fact
that the two robots have no common coordinate systems, the
landmarks common to both maps are unknown, and their
sensors are noisy.

If two robots each has a stochastic map with n estimated
landmarks, there are total 2n possible ways of matching
one map with the other. In principle, the optimal way of
combining the maps is to determine the best match among
the 2n possibilities under a certain criterion of “best fit.”
Such an approach is of course not tractable even when n
is relatively small. For maps with hundreds of landmarks,
exhaustive matching of maps is not an option.

A. Summary of Results
This paper presents a computationally tractable approach

to the problem of combining stochastic maps with unknown

This work is supported in part by the Army Research Office under Grant
W911NF1010419.

coordinate systems possibly containing unknown common
landmarks. Our approach is based on the maximum like-
lihood principle and partitions the optimal map combining
problem into two separate steps: matching and combining.
The matching step identifies the common map (if any)
between the two stochastic maps by matching a subset of es-
timated landmarks in one map with those of a different map.
Once the common landmarks are identified, the conceptually
simpler combining step finds the best translation and rotation
operations to align the maps in an optimal fashion.

Finding the best match of subsets of estimated landmarks
is combinatorial and nontrivial. Our contribution is a formu-
lation of this problem as a bipartite matching of Delaunay
triangles with Groth representation. Such a bipartite match-
ing problem can be solved efficiently by a linear program,
which yields a scalable solution. In the proposed approach,
the cost function used in measuring the quality of matching
is derived from the generalized likelihood ratio test (GLRT).
To this end, we obtain the closed form expression for the
generalized likelihood ratio that is trivial in computation.

In this paper, we propose a maximum likelihood (or least
squares under the Gaussian noise assumption) approach to
combining common landmarks. As in the case of computing
the generalized likelihood ratio statistics, the optimal rotation
and translation operations can also be obtained in closed
form, making the combining step also trivial in computation.

B. Related work

The problem considered in this paper has application to
many different fields, such as robotics, image processing,
and pattern recognition. Most relevant to this work is that
of Groth [4], who considered the problem of identifying
stars in images from a star tracker with those of an existing
catalog. Groth proposed a special technique based on an
exhaustive matching of triangles. The algorithm presented
in this paper is inspired by Groth’s approach in that we
also formulate the common landmark identification problem
as one of matching of triangles. Our contribution, however,
lies in the formulation of bipartite matching of the Delaunay
graphs, the use of generalized likelihood ratio statistics, and
the closed form computations of test statistics and map
combining parameters.

The matching part of our approach can be viewed as as
a special form of data association [5], [6], [7]. The standard
data association problem in the context of single robot SLAM
is to match a measurement with a set of existing landmarks.
This problem has been considered by many authors, but



perhaps the most relevant work is the linear programming
approach proposed by Zhang, Xie and Adams [8]. Our
matching approach also involves linear programing, but in
quite a different context and using different cost functions.

There is a great deal of existing work on obtaining the
optimal alignment of two images once the common parts
of the images are identified. To our knowledge, no closed-
form solution in terms of elementary functions existed in
the literature, although solutions based on the singular value
decompositions (SVD) have been obtained [9]. See also
[10], [11]. Perhaps the most closely related work is that of
Thrun and Liu [12] due to its direct application to mobile
robot navigation. In their work, an iterative hill-climbing
approach is proposed as a solution to the correspondence
and alignment problems.

II. BIPARTITE MATCHING

We now consider the problem of identifying common land-
marks in the maps of two separate robots. The maps of the
robots are referred to as map p and map q. The identification
process includes three parts: (i) Delaunay triangulation and
Groth representation; (ii) generalized likelihood ratio test
(GLRT) statistics; (iii) bipartite matching of triangles.

A. Delaunay triangulation and Groth representation

We assume that there are two robots, p and q. Robot p has
the stochastic map Xp which is a random vector including
locations of all its estimated landmarks. The stochastic map
Xq for robot q is similarly defined. Each robot can then
generate its own Delaunay triangulation, from which it
obtains a list of triangles. Each triangle is made of three
vertices that are placed into a six dimensional vector Y
following the Groth representation of triangles [4]. Notice
that Delaunay triangulation is almost surely unique but the
noisy versions of the same map may have quite different
Delaunay graphs.

B. GLRT statistics

For a triangle in map p with Groth vector representation
Yp and a triangle in map q with Groth vector representation
Yq , we consider the following binary hypothesis H0 vs.
H1. Under hypothesis H0, Yp and Yq do not correspond
to the same three landmarks in truth. Under the Gaussian
measurement assumption, we have

H0 :
[
Yp
Yq

]
∼ N

([
µp
µq

]
,

[
Σp

Σq

])
(1)

where we assume that µp, µq ∈ R6 are unknown location
vectors and Σp = Σq = σ2I6 are noise covariance matrices
with known σ. (We use Ik to denote a k×k identity matrix.)
Under hypothesis H1, Yp and Yq are noisy measurements of
the same three landmark in truth but the actual locations of
the three landmarks are deterministic unknowns. In particu-
lar,

H1 :
[
Yp
Yq

]
∼ N

([
µ

R(θ)µ+ Ft

]
,

[
Σp

Σq

])
(2)

where µ ∈ R6 is the unknown vector of the three landmark
locations (in Groth representation), θ the unknown rotation
of map q, t ∈ R2 the unknown translation of map q, and
F = [I2 I2 I2]T ∈ R6×2. Again we assume Σp = Σq = σ2I6
with known σ.

The generalized likelihood ratio test (GLRT) is given by

Λ(yp, yq) =
max
µ,t,θ

f1(yp, yq;µ, t, θ)

max
µp,µq

f0(yp, yq;µp, µq)

H1

≷
H0

τ (3)

where τ is selected to control the level of false alarm. The
likelihood function under H0 is given by

f0(yp, yq;µp, µq) ∝ exp
{
− 1

2σ2
J0(µp, µq; yp, yq)

}
where

J0(µp, µq; yp, yq) = ||yp − µp||2 + ||yq − µq||2. (4)

The optimization under H0 (3) gives µ∗p = yp and µ∗q = yq .
The optimization under H1 in (3), on the other hand,

involves a more complicated likelihood function

f1(yp, yq;µ, t, θ) ∝ exp
{
− 1

2σ2
J1(µ, t, θ; yp, yq)

}
where

J1(µ, t, θ; yp, yq) = ||yp−µ||2 + ||yq −R(θ)µ−Ft||2. (5)

Since J1 is non-convex, the ability to obtain a tractable solu-
tion is essential to our objective of having a computationally
scalable solution. The following theorem provides a closed-
form solution to the optimization under H1.

Theorem 1: The ML solution (θ∗, µ∗, t∗) under H1 is
given by

θ∗ = sgn(β)

[
cos−1

(
α√

α2 + β2

)
− π

]
(6)

t∗ =
1
3
FT [yq −R(θ∗)yp] (7)

µ∗ =
1
2
RT (θ∗)

[
Q+R(θ∗)yp +Q−yq

]
(8)

where

Q+ = I6 +
1
3
FFT , Q− = I6 −

1
3
FFT , (9)

Ic =
[

1 0
0 1

]
and Is =

[
0 −1
1 0

]
(10)

α = −yTq (I3 ⊗ Ic)Q−yp (11)

β = −yTq (I3 ⊗ Is)Q−yp (12)

γ =
1
2
yTp Q

−yp +
1
2
yTq Q

−yq. (13)

With the above theorem, the generalized likelihood ratio
statistics, the left hand side of (3), can be computed in closed
form.



C. The ML Matching of Bipartite Graph

We now formulate the problem of identifying matching
triangles as a bipartite matching problem. Given the set of
Delaunay triangles {yip : i = 1, · · · , Np} from map p and
{yiq : i = 1, · · · , Nq} from map q (in Groth representation),
we consider the following linear program

maximize
N∑
i=1

N∑
j=1

Λ(yip, y
j
q)xij (14a)

subject to
N∑
i=1

xij = 1, j = 1, . . . , N (14b)

N∑
i=j

xij = 1, i = 1, . . . , N (14c)

and 0 ≤ xij ≤ 1 (14d)

where Λ(yip, y
j
q) is the generalized likelihood ratio statistic

computed from Theorem 1 and N = max(Np, Nq). It is
well known that the solution of the above linear program
are integer (0 − 1) valued xij solutions. If xij = 1, we
consider triangle yip and yjq are tentatively matched. Thus the
above linear program provides a list of tentatively matched
triangles, one from each stochastic map. (When Np 6= Nq ,
there will be unmatched triangles.) From this list, we then
select a confirmed list of matches by applying a threshold
test on the likelihood ratio statistics. Those triangle pairs with
sufficiently high GLRT are considered matched and declared
as corresponding to common landmarks. Those pairs with
low GLRT are considered independently observed and not
part of the common map.

The probabilities of missed detection and false alarm of
course depend on the threshold τ used in the GLRT test.
Because the matched landmarks are used to combine stochas-
tic maps as described in the next section, it is important to
choose τ sufficiently high in order to avoid false positive
declarations.

III. MAXIMUM LIKELIHOOD MAP COMBINING

From the set of matched triangles that pass the GLRT, we
obtain the set K of matched landmarks and the corresponding
estimates {yip : i ∈ K} in map p and {yiq : i ∈ K} in map
q. Using Theorem 1 with a generalization to n landmarks,
we can then solve the best (posterior) common landmarks
µ∗, the best (posterior) rotation θ∗, and the best (posterior)
translation t∗. The maximum likelihood combined map is
then given by

µ∗ML =

 µ∗

µ∗p|0

RT (θ∗)(µ∗q|0 − Ft
∗)

 (15)

where µ∗p|0 is the ML estimate of landmarks under H0 in
map p and µ∗q|0 the ML estimate of landmarks under H0 in
map q.

IV. SIMULATION

Two 100 landmark maps with additive zero-mean Gaus-
sian noise and 75 common landmarks are shown in Fig. 1.
The threshold τ is chosen to minimize the number of false
positive declarations. In each case, the signal-to-noise ratio
is 10 log(σ̄2/2σ2) where σ̄2 is the sample variance of the
edges lengths in the ground truth Delaunay graph and σ2 is
the variance of the additive noise. The example provides an
idea of how the performance of our approach degrades with
noise. With increasing SNR, the result indicates an increase
in missed detections (incorrect declarations of H0) and a
decrease in true positives (correct declarations of H1). At
an SNR of 40 dB, there are 23 true positives (illustrated in
green) and 83 missed detections (illustrated in blue). At 30
dB, there are 5 true positives and 62 missed detections. In
each case, zero false positives were observed.

(a)

(b)

Fig. 1. Matching example with 100 landmarks in each map. Correct
declarations of H1 are illustrated by green triangles. Incorrect declarations
of H0 (missed detections) are illustrated in blue. Gaussian noise is added
to each map with an SNR of (a) 40 dB and (b) 30 dB.

The combined maps are shown below in Fig 2. This
result indicates that the maximum likelihood combined map
is consistent with ground truth in the absence of false
positives (we note, however, that false positives may produce
undesired results in the combined map).

(a) (b)

Fig. 2. Maximum likelihood combining. The SNR associated with the
combined maps are (a) 40 dB and (b) 30 dB. This result demonstrates that
duplicate entries may be introduced in the combined map due to missed
detections (an issue that may be resolved using standard data association
techniques). Cross hairs indicate ground truth and the red squares are entries
of the combined map.



Fig. 3 shows the performance of our approach for repeated
experiments of overlap and noise scenarios. In each scenario,
the performance of our approach degrades gracefully with
increasing SNR. The percentages of 75% and 50% common
landmarks in each map are considered. At 75%, the results
for the 10 and 20 landmark scenarios are relatively the same.
However at 50%, a degrade in performance is observed.
This result suggests that greater overlap may be required to
maintain performance as the number of landmarks in each
map is increased.
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Fig. 3. Monte Carlo receiver operating characteristics. The following
scenarios are considered: (a)10 landmarks in each map with 75% overlap,
(b) 10 landmarks in each map with 50% overlap, (c) 20 landmarks in each
map with 75% overlap and (d) 20 landmarks in each map with 50% overlap.
Each curve is computed based on 10,000 experiments with various SNR.

V. CONCLUSION

We considered in this paper the problem of combining
stochastic maps from independent agents who explore possi-
bly overlapping areas. The proposed optimization framework
is based on the maximum likelihood principle. While our
solution is suboptimal, the proposed approach has significant
computational advantage as a scalable algorithm for the
maximum likelihood combining of maps.
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